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The crystal studied is a 0.545 (1):0.455 twin, space group C�11,

Z = 16, and is a commensurate occupational and displacive

modulation of a Z = 4 idealized parent structure with the space

group A2/a and ap = a/2, bp = b/2, cp = c. A hierarchical

approach to solution and refinement led sequentially to

structures in the space groups A2/a, P21/n, P�11 and finally C�11.

The major and minor components of the reflection intensities

could be identified using irreducible representations of A2/a

and P21/n, which in turn suggested suitable constraints and

restraints for optimizing the refinement pathway. Comparative

refinement was used to show the correctness of the final

structure solution and how appropriately chosen constrained

refinement allowed an escape from a false minima.
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1. Introduction

The X-ray reflection data for crystals of

[Mn(cyclam)(NCO)2]+
�ClO�4 (cyclam is the tetradentate

ligand 1,4,8,11-tetraazacyclotetradecane) were consistent with

the space group C2/m, and Z = 16 for the monoclinic unit cell

with a = 30.5936 (10), b = 18.8967 (3), c = 12.8288 (5) Å, � =

111.561 (2)�. However, subset G of much stronger reflections

was consistent with an A-centred cell with axes ap = a/2, bp =

b/2, cp = c and Z = 4. The G reflections correspond to the h =

2N, k = 4N, l = 2N and the h = 2N, k = 4N + 2, l = 2N + 1

reflections. Using only these reflections, and re-indexing them

as hp = h/2, kp = k/2, lp = l, a parent structure in space group

A2/a can be readily determined. In this structure the cation is

apparently ordered and lies on a centre of inversion, whereas

the anion is disordered about a twofold axis. The true struc-

ture is a commensurate modulation of this parent structure.

Doubling the ap and bp axes of this parent structure necessa-

rily destroys the glide planes and screw axes of the parent

structure, thus reducing the symmetry to C�11. However, these

pseudo-symmetry elements offer an explanation for the

twinning that relates reflections hkl and �hhk�ll. This paper details

how a hierarchical approach to refinement and the identifi-

cation of symmetrized components of the structure creates a

logical path for sensible refinement.



1.1. Chemical background

Manganese(III) ions seem to be a vital ingredient in several

single-molecule magnets (Barra et al., 1997; Long, 2003) in

terms of supplying these with a high-spin ground state and the

magnetic anisotropy which is a prerequisite for these magnets

to exhibit their special properties. In an attempt to correlate

the magnetic anisotropy of axial MnIII ions to their structure

and composition we have synthesized a number of new cations

having the general formula trans-[Mn(cyclam)X2]n+ (Mossin et

al., 2002, 2005), thus providing a comprehensive series

(Daugherty et al., 1991; Meyer et al., 1998). X is a neutral or

anionic ligand. The title compound is a member of this series.

2. Experimental

2.1. Synthesis and characterization

2.1.1. trans-cyclambis(isocyanato)manganese(III) perchlo-
rate, trans-[Mn(cyclam)(NCO)2]ClO4. trans-[Mn(cy-

clam)(H2O)2](CF3SO3)3�H2O (0.38 g, 0.50 mmol; Mossin et al.,

2005) was dissolved in acetonitrile (5 ml) in a reaction tube.

NaClO4�H2O (0.21 g, 1.5 mmol) and NaNCO (0.08 g,

1.2 mmol) was dissolved in a minimum amount of water and

the aqueous solution was placed carefully with a Pasteur

pipette in the bottom of the reaction tube containing the

acetonitrile solution. Yellow–green crystals suitable for X-ray

analysis appeared in the interface between the two phases.

Yellow–green microcrystals were obtained by stirring the

solution and filtering within minutes. The product was washed

with acetonitrile and air dried. Yield: 0.18 g, 82%. Analysis: H

5.4, C 33.0, N 19.0; H24C12N6O6ClMn requires: H 5.5, C 32.9, N

19.2.

The product is stable in the solid state, but decomposes

slowly in aqueous solution with the evolution of gas.

Magnetic susceptibility measured at 1.3 T in the tempera-

ture interval 50–300 K on the cation [Mn(cyclam)(NCO)2]+

performed on [Mn(cyclam)(NCO)2]CF3SO3 (not shown)

shows a constant effective magnetic moment: �eff = 4.90

corresponding to four unpaired electrons (S = 2 ground state).

2.2. Data collection and determination of the parent
structure

X-ray diffraction data were collected using a Nonius

KappaCCD diffractometer employing graphite-mono-

chromated Mo K� radiation on a crystal cooled to 122 (1) K.

The unit cells were determined and refined by DIRAX

(Duisenberg, 1992). Data integration and corrections for

background, Lorentz and polarization effects were performed

with EvalCCD (Duisenberg et al., 2003). Data collection

details are shown in Table 1.

The reflection data (152 267 reflections) were initially

merged assuming C�11 symmetry to form a data set of 27 998

reflections, Rmerge = 0.0652, then remerged assuming C2/m

diffraction symmetry to form a second data set of 15 154

reflections. For the final merge, Rmerge was 0.0193 for the 6250

k even reflections, 0.1307 for the 6594 k odd reflections and

0.0278 for all 12 844 reflections, for which both twin compo-

nents were collected. There were 699 k 6¼ 0 reflections with I >

3�(I), but only one of the two twin-related reflections were

collected. These reflections were placed in a separate set from

the other reflections. It was estimated from the merging

process that an additional 6.8% error in I should be included

for the k odd reflections. Initial structure solution and

refinement used the second data set, thus imposing an exact

1:1 twin on the triclinic C�11 structure. The final refinement used

the larger data set and showed that the crystal was a

0.545 (1):0.455 twin. The parent structure was solved in the

space group A2/a by direct methods using the program SIR97

(Altomare et al., 1999) and refined with SHELXL97 (Shel-

drick, 1997). Spot splitting was not observed, although an

unconstrained unit-cell determination gave � = 90.180 (2) and

� = 90.083 (2)�. Reflections were processed assuming � = � =

90.0 � for the initial refinements, but the measured cell was

used for the evaluation of geometry for the final refinement.

No noticeable difference in refinement statistics resulted from

changing cells and the bond-length ranges remained essen-

tially the same.
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Table 1
Experimental details.

Crystal data
Chemical formula C12H24MnN6O2�ClO4

Mr 438.76
Cell setting, space group Triclinic, C�11
a, b, c (Å) 30.5936 (10), 18.8967 (3), 12.8288 (5)
�, �, � (�) 90.180 (2), 111.561 (2), 90.083 (2)
V (Å3) 6897.9 (4)
Z 16
Dx (Mg m�3) 1.690
Radiation type Mo K�
No. of reflections for cell parameters 976
� range (�) 4.0–33.3
� (mm�1) 0.97
Temperature (K) 122 (1)
Crystal form, colour Block, yellow–green
Crystal size (mm) 0.39 � 0.27 � 0.18

Data collection
Diffractometer Nonius KappaCCD
Data collection method ! scans with � offsets
Absorption correction None
No. of measured, independent and

observed reflections
152 267, 27 998, 17 584

Criterion for observed reflections I > 3�(I)
Rint 0.065
�max (�) 34.6
Range of h, k, l �48) h) 48

�30) k) 30
�20) l) 20

Refinement
Refinement on F
R[F2 > 2�(F2)], wR(F2), S 0.041, 0.061, 1.31
No. of reflections 27 998
No. of parameters 497
H-atom treatment Constrained to parent site
Weighting scheme w = 1/[�2(Fo) + (0.02Fo)2]
(�/�)max 0.1
��max, ��min (e Å�3) 1.00, �1.01

Computer programs used: COLLECT (Nonius, 1999), DIRAX (Duisenberg, 1992),
EvalCCD (Duisenberg et al., 2003), DREAD (Blessing, 1987), SHELXS97 (Sheldrick,
1997), RAELS2000 (Rae, 2000), SIR97 (Altomare et al., 1999).



2.3. Hierarchical structure solution and refinement

Reflections G are associated with a parent structure and

correspond to the h = 2N, k = 4N, l = 2N and the h = 2N, k = 4N

+ 2, l = 2N + 1 reflections. There are satellite reflections G � q

described by h = 2N + 1, k = 4N� 1, l = 2N or 2N + 1, implying

q = a* + b* = (a�p + b�p)/2, and satellite reflections G + q0

defined by h = 2N, k/2 + l = 2N + 1, implying q0 = b�p. The

satellites G + q0 can be regarded as second-order satellites

since G + 2q define the same reflections as G + q0. Omitting

the h odd, k odd reflections, there are pseudo-absence

conditions consistent with the cell ap, bp, cp and the space

group P21/n, a subgroup of A2/a, i.e. 0k0, k = 4n only and h0l,

h/2 + l = 2N only. The origin chosen for A2/a located an

inversion at the origin for the subgroup P21/n.

The satellite reflections G � q cause a doubling of the a and

b axes compared with the parent structure. This implies that

all the glide operations and all the 21 screw operations of the

A2/a parent structure cannot remain true symmetry opera-

tions. An ordering of the cations is possible in a number of

subgroups of A2/a. If we describe the parent structure in its

non-standard A2/a setting (a glide at y = 0 and inversion at the

origin) and obtain the fractional coordinates for the C-centred

cell as x = xp/2, y = yp/2, z = zp, then these subgroups are A�11;

Aa; P21/n (�11 at 0,0,0 or 0,14,0); P21/a (�11 at 0,18,
1
4 or 0,38,

1
4); C�11 (�11 at

0,0,0 or 0,14,0) and C�11 (�11 at 0,18,
1
4 or 0,38,

1
4), where all the fractional

coordinates are described relative to the final C-centred cell

and not the parent cell. This description of fractional coordi-

nates will be continued throughout this paper. It should be

noted that there are other subgroups of A2/a which are

consistent with the observed reflections, namely A2; P2/a (�11 at

0,0,0 or 0,14,0); P2/n (�11 at 0,18,
1
4 or 0,38,

1
4) and C2 (2 at 1

8,y,0 or 3
8,y,0).

We have used non-standard settings for some space groups so

that all the space group choices are a simple selection from the

symmetry elements of the parent structure with no cell or

fractional coordinate transformations required. This results in

the non-standard setting of C�11 rather than P�11 for the final

structure.

Irreducible representation theory (Bradley & Cracknell,

1972) can be used to assess the possible symmetries of the

Fourier transform of all reflections G + nq for a particular

value of n. G is a Bragg reflection of the parent structure and q

is the modulation wavevector described above. An irreducible

representation associated with the vector nq only involves the

parent structure symmetry element (Rm,tm), where (Rm,tm)r =

Rmr + tm if n(Rmq � q) is a Bragg reflection of the parent

structure. Thus, all symmetry elements of the parent are

involved when n = 0 or 2, but when n = 1, the only symmetry

elements involved are those for which Rm = 1, the identity.

However, it is possible to have either C2 (2 at 0,y,18 or 0,y,38)

or C�11 (�11 at 0,0,0 or 0,14,0 or 0,18,
1
4 or 0,38,

1
4) as the maximum

symmetry if we look at the Fourier transform of all reflections

G + Rmq for all Rm of the parent structure. If we decide that

the parent structure is P21/n, a subgroup of A2/a with the same

cell ap, bp, cp, then all (Rmq � q) are now Bragg reflections of

the P21/n structure and we now only have first-order satellites.

In this instance, C�11 (�11 at 0,0,0 or 0,14,0) are the maximum

symmetries possible for the resulting structure.

Occupancy and displacive modes have different character-

istics in a diffraction pattern. Using a Taylor expansion starting

from structure factors for the idealized 1:1 disordered A2/a

parent structure we can say the correct structure has F(H) =

[F(H)]o + �i[@F(H)/@pi]o[pi � (pi)o] + higher-order terms. The

subscript o implies evaluation using the idealized parent

structure. On average, at low sin �/	, [@F(H)/@pi]o is large

when pi is an occupancy parameter, but small when pi is a

displacive parameter and as sin �/	 increases, [@F(H)/@pi]o

decreases when pi is an occupancy parameter, but increases

when pi is a displacive parameter. Inspection of synthetic plots

of undistorted reciprocal space obtained from the raw

diffraction images (Nonius, 1999) showed that the occupancy

was most probably associated with the second-order satellites

and the displacive mode with the first-order satellite reflec-

tions.

The pseudo-absence conditions mentioned earlier

suggested that it was possible to refine an apparently ordered

Z = 4 structure in the space group P21/n using only the h even,

k even subset of observed reflections. This was found to be the

case. In this model all the anions are equivalent and all the

cations lie on inversion centres. However, two n-glide-related

cations are not equivalent to the other two n-glide related

cations. Should the symmetry be lowered to C�11 we then have

Z = 16 and the first two cation sites become four non-

equivalent inversion centres at 1
2,0,0; 1

2,
1
2,0; 3

4,
1
4,

1
2;

3
4,

3
4,

1
2 plus C-

centring, while the second two cation sites become two non-

equivalent general positions at 1
2,

1
4,

1
2;

3
4,

1
2,0 plus C-centring and

inversion through the origin. The four equivalent positions for

the anions in P21/n now become four non-equivalent general

positions plus C-centring and inversion through the origin.

However, there is an intermediate stage that needs to be

considered. The P21/n symmetry can be lowered to P�11, Z = 4,

in the cell ap, bp, cp before further lowering the symmetry to

C�11 in the larger cell a, b, c. In the P�11 space group, four non-

equivalent cations each lie on an inversion centre and one pair

of inversion-related anions is not equivalent to the other pair.

This creates two symmetrized components in addition to the

A2/a and P21/n components of the P21/n structure. The

labelling of symmetrized components is described in the

Appendix. These components have A�11 and P2/a symmetry and

are only observed on their own in h0l reflections that violate

the n-glide absence condition, h/2 + l = 2N + 1 and, in the case

of P2/a, the screw-axis condition 0k0, k = 4N + 2. For the A�11
component, only 13 of the h0l, h = 4N + 2, l even reflections

have I > 3�(I) and for the P2/a component only 15 of the h0l,

h = 4N, l odd reflections have I > 3�(I) and only the 0, 18, 0 of

the 0k0, k = 4N + 2 reflections has I > 3�(I). This compares

with the 158 h0l, h = 4N + 2, l odd reflections with I > 3�(I) that

see the P21/n component in isolation.

Since the crystal being studied was initially assumed to be a

1:1 twin, the reliability of the A�11 and P2/a components could

only be assured if a sensible hierarchical approach to

constrained refinement was adapted. First a P21/n structure

was obtained, then a P�11 structure and finally a C�11 structure.
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Reflections were monitored using different classes, see Table

2, in order to meaningfully assess the progress of the refine-

ment. All refinements were carried out using the C�11 space

group with Z = 16 and constraints imposed the various space-

group symmetries using the comprehensive constrained least-

squares refinement program RAELS2000 (Rae, 2000).

The A2/a structure solution was used to create an initial Z =

16 model in space group C�11 in which the cations were

constrained to have A2/a symmetry and the anions were

ordered and had P21/n symmetry, both modulo the cell ap, bp,

cp. All ions were described using refineable local orthonormal

coordinates relative to refineable local orthonormal axial

systems (Rae, 1975a); those for the cations were centred on

the relevant Mn atom and those for the anions on the relevant

Cl atom. Exact inversion for the cations was imposed either by

a crystallographic inversion centre of C�11 or a local inversion

centre using a multi-axis description available as a standard

option in RAELS and described previously (Haller et al., 1995;

Rae & Willis, 2003). Atoms equivalent under P21/n symmetry

referenced the same local coordinates as a way of imposing

identical object constraints. The anisotropic atom displace-

ment parameters for each anion were described using a

refineable 15-parameter TLX model (Rae, 1975b) initially

centred on the relevant Cl atom. Those for the cations were

described using refineable 12-parameter TL models centred

on the relevant Mn atom. Refineable parameters were

coupled together (Rae, 1984) in order to maintain the imposed

symmetry. Additional individual anisotropic atom displace-

ment parameters were defined relative to the refinable axial

systems defining each cation for all the non-hydrogen cation

atoms other than the Mn atoms, and these additional para-

meters were constrained to be exactly equal for atoms related

by the A2/a parent symmetry. H atoms were imposed in

chemically sensible positions after each refinement cycle and
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Table 2
Refinement statistics.

Reflections were divided into classes.

Class 1 h even, k + 2l = 4N. A2/a and A�11 modes.
Class 2 h even, k + 2l = 4N + 2. P21/n and P2/a modes.
Class 3 h odd, k odd. C�11 and C�11 modes.
Class 4 k = 0, l even, h = 4N + 2. A�11 mode alone.
Class 5 k = 0, l odd, h = 4N + 2. P21/n mode alone.
Class 6 k = 0, l odd, h = 4N. P2/a mode alone.
Class 7 h = l = 0, k = 4N + 2. P2/a mode alone.
Class 8 k 6¼ 0 and only 1 of 2 twin-related reflections collected.
Class 9 reflections with I < 3�(I).
Class 1–8 reflections with I > 3�(I).
Reflections in classes 8 and 9 were not used in the refinement.
Reflections in classes 4–9 were excluded from classes 1–3.

Final refinement in the C�11 data set.

The constrained and restrained refinement in C�11 using 498 variables and 56
restraints. h|F2|i values scaled relative to 1000 for Class 1. Maximum shift/
sigma = 0.1. Final difference map electron density �1.00 to 1.01 e Å�3. The
structure contains 106 non-H-atom sites and 96 H-atom sites in the asymmetric
unit.

Class Number R(F) R(F2) wR GoF h|F2|i

1 5773 0.029 0.048 0.043 1.49 1000
2 4512 0.044 0.064 0.052 1.40 197
3 7112 0.072 0.117 0.076 1.43 64
4 13 0.204 0.323 0.289 2.70 17
5 158 0.035 0.054 0.052 1.64 361
6 15 0.227 0.377 0.356 3.79 17
7 1 0.130 0.277 0.130 1.07 14
1–7 17 584 0.041 0.055 0.054 1.43 408
9 10 414 0.533 0.765 0.364 1.04 9
All 27 998 0.086 0.064 0.061 1.31 257

Refinement statistics for the C2/m data set.

Constrained and restrained refinement in C�11 using 497 variables.

Class Number R(F) R(F2) wR GoF

1 2840 0.025 0.044 0.039 1.46
2 2197 0.036 0.054 0.043 1.29
3 3616 0.056 0.094 0.062 1.21
4 13 0.158 0.234 0.261 2.48
5 158 0.035 0.054 0.051 1.61
6 15 0.209 0.334 0.332 3.59
7 1 0.054 0.110 0.054 0.45
8 699 0.065 0.093 0.069 1.58
1–8 9539 0.036 0.050 0.047 1.32
9 5615 0.399 0.608 0.343 1.02
All 15 154 0.072 0.058 0.054 1.24

Constrained refinement in C�11 using 365 variables.

Class Number R(F) R(F2) wR GoF

1 2840 0.025 0.045 0.040 1.51
2 2197 0.038 0.057 0.045 1.35
3 3616 0.074 0.126 0.088 1.71
4 13 0.480 0.697 0.425 4.00
5 158 0.036 0.055 0.053 1.66
6 15 0.415 0.596 0.624 6.70
7 1 0.365 0.863 0.365 3.04
8 699 0.066 0.093 0.070 1.59
1–8 9539 0.040 0.053 0.056 1.56
9 5615 0.417 0.640 0.365 1.08
All 15 154 0.078 0.061 0.062 1.42

Constrained refinement in P21/n. Reflections in sets 3, 4, 6 and 7 calculate as
0.0.

Class Number R(F) R(F2) wR GoF

1 3117 0.101 0.145 0.178 3.791
2 2336 0.272 0.430 0.361 6.489
5 158 0.277 0.466 0.444 8.949

Constrained refinement in P�11. Reflections in set 3 were calculated as 0.0.

Class Number R(F) R(F2) wR GoF

1 3117 0.087 0.124 0.146 3.126
2 2336 0.153 0.239 0.216 3.892
4 13 0.261 0.454 0.435 3.739
5 158 0.138 0.208 0.234 4.737
6 15 0.399 0.609 0.492 4.798
7 1 0.829 0.971 0.829 6.630

An uncorrelated 2% error in |F(h)| was included along with a counting statistics error for
evaluating weights w = 1/[�(F)2 + (0.02F)2)]. Refinement was on F. The use of this weight
modification is the cause of the GoF values being better for the C2/m merged reflections.
The P21/n and P�11 refinements used an uncorrelated 4% error in |F(h)| and reflections in
class 9 were included in classes 1–3.



given anisotropic displacement parameters determined by the

parameters of the atoms to which they are attached.

Ordering the anions to initiate the P21/n refinement allows a

choice between two orientations for the reference anion and

this corresponds to an origin choice between sites which are

(bp + cp)/2 = (b + 2c)/4 apart for the same structure. The

orientation was chosen so that after refinement a cation with

the largest principal libration axis was at the origin. We note

that molecules separated by b/2 can rotate in opposite direc-

tions upon changing to a C�11 structure if they both lie on

inversion centres, whereas centrosymmetric molecules related

by an inversion are necessarily parallel to each other.

In the P21/n model cations 1, 2, 4, 5 at 1
2,0,0; 1

2,
1
2,0; 3

4,
1
4,

1
2 and 3

4,
3
4,

1
2

are equivalent; cations 3, 6 at 1
2,

1
4,

1
2 and 3

4,
1
2,0 are equivalent, and

all the anions are equivalent. The P�11 refinement was initiated

from the P21/n model by rotating cations 1 and 2 an equal

amount about the b direction and the pseudo-21 screw-related

cations 4 and 5 by an equal but opposite amount so as to

destroy the screw axis. In this P�11 model only those reference

cations and anions related by a 1/2b translation are equivalent.

Initially the P21/n equivalence of the rigid-body TL and TLX

parameterizations was maintained, but this was later replaced

by equivalence under P�11 symmetry. This refinement behaved

fairly well and refinement improved substantially, initially

quite slowly but more rapidly after each cycle until eventual

convergence. Refinement statistics are given in Table 2.

Examination of the final P�11 model showed that the anions

and the cations 3 and 6 maintain equivalence under P21/n

symmetry to a very good approximation. Also, cations 1 and 2

and cations 4 and 5 had very similar libration parameters with

one large principal value of ca 0.075 radians2, corresponding to

a root mean-square displacement of ca 15 � in directions

roughly equivalent under P21/n symmetry. This suggests the

major contribution to the C�11 reflections is a displacive mode in

which these four cations each rotate by equal amounts about

their major principal libration axis direction, with the displa-

cements being equal but opposite for cations 1 and 2 (and for

cations 3 and 4). However, the rotations for cations 1 and 3 are

either equal or opposite. These options correspond to the

different orientations of the same displacive mode, i.e. either

C�11i or C�11ii (see the Appendix). However, the distinction

between orientations has already been made by the P�11
component and so both options had to be attempted. The

overall sign of this component selects between alternative

origins. In an initial refinement cycle of comparative

constrained refinements (see the Appendix) the C�11ii option,

based on the reference cation site x,y,z = 1
2,0,0, performed

better and this model was refined. The existence of finite P�11
and C�11ii components initiated refinement of the C�11i compo-

nent and the contributions from the remaining ions to the C�11
components. The definition of the C�11ii component was chosen

to include the major contribution from each set of pseudo-

equivalent ions at x,y,z; x,y + 1
2,z; �x + 1

4,y + 1
4,�z + 1

2 and �x +
1
4,y + 3

4,�z + 1
2) by appropriately selecting the ion site for the

reference equivalent position x,y,z (see the Appendix).

To restrict the possible noise in the less well determined P�11
and C�11i components each pair of pseudo-equivalent cation

positions, viz. (x,y,z = 1
2,0,0 and �x + 1

4,y + 3
4,�z + 1

2),(x, y + 1
2,z

and �x + 1
4,y + 1

4,�z + 1
2), (x,y + 1

4,z + 1
2 and �x + 1

4,y,�z), (x,y +
3
4,z + 1

2 and�x + 1
4,y + 1

2,�z), was constrained to have their local

coordinates in common. (In the atom list the last two pseudo-

equivalent positions were replaced by their C�11 equivalents�x,

�y + 1
4, �z + 1

2 and x + 1
4, �y, z.) Initially the P�11 equivalence of

the TL and TLX parameterizations was maintained, but this

equivalence was later removed. The anions were not

constrained to have local symmetry but were initially

constrained to have the same local coordinates so as to

maintain a pseudo-equivalence under P21/n symmetry because

of their small contribution to the k odd reflections. Pairs of

pseudo-equivalent anions at x,y,z’ 5
8,y,0 and�x + 1

4,y + 3
4,�z +

1
2 (y ’ 0.19 or 0.69) were subsequently constrained to have

their local coordinates in common. Final refinement of this

model used 365 variables and refined to give R(F) = 0.040 for

the 9539 independent merged reflections with I > 3�(I)

obtained assuming C2/m diffraction symmetry. This model was

rerun excluding the 699 k 6¼ 0 reflections for which only one of

two twin equivalents was collected. This had almost no effect

on the refinement statistics other than increasing the R(F)

value for these reflections from 0.063 to 0.066 (GoF from 1.52

to 1.59). Further details are given in Table 2.

The only change for the final refinement cycles of the C2/m

merged reflections was to refine all non-H atoms indepen-

dently, thus increasing the number of variables to 497. The

number of restraints on the distance differences used was now

56. Bond lengths constrained to be equal in the previous

model were now only restrained to approach equality. The

final statistics on the h odd, k odd reflections (excluding

reflections for which only one of the two twin equivalents was

collected) were now R(F) = 0.057 compared with 0.074 and

GoF = 1.21 compared with 1.34. The success of the final

refinement was so good that replacing the rigid-body para-

meterization with an individual atom displacement para-

meterization was considered to be unnecessary.

Refinement was then transferred to the larger set of

reflections merged assuming C�11 diffraction symmetry. A twin

ratio of 0.545 (1):0.455 was obtained using 498 variables to

describe 96 non-H-atom sites and 106 H-atom sites. These

results were used in the lists of atom parameters, bond lengths

and bond angles. Refinement statistics are in Table 2. It should

be noted that the relative importance of the h0l reflections in
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Table 3
Ranges of pseudo-equivalent cation bond lengths (Å).

Mnn—Nn1 2.032 (2)–2.050 (2)
Mnn—Nn2 2.036 (2)–2.041 (2)
Mnn—Nn3 2.142 (2)–2.155 (2)
Nn1—Cn1 1.477 (3)–1.485 (3)
Nn1–Cn2 1.478 (3)–1.483 (3)
Nn2–Cn4 1.475 (3)–1.481 (3)
Nn2–Cn5 1.481 (3)–1.493 (3)
Cn1–Cn5 1.499 (3)–1.513 (3)
Cn2–Cn3 1.512 (3)–1.519 (3)
Cn3–Cn4 1.508 (3)–1.522 (3)
Nn3–Cn6 1.171 (3)–1.181 (3)
Cn6–n1 1.193 (3)–1.202 (3)



evaluating the minor modes is reduced when the twin ratio is

no longer 0.5:0.5.

3. Results and discussion

The ranges of pseudo-equivalent cation bond lengths are

given in Table 3. The use and labelling of symmetrized

components is described in the Appendix. Tables 4 and 5

assume A2/a is the parent symmetry, whereas Tables 6 and 7

assume P21/n is the parent symmetry.

The structure can be described as two substructures of C�11
symmetry. The first substructure contains cations in a centro-

symmetric layer at x = 1
2 located at the inversion centres 1

2,0,0

and 1
2,

1
2,0 and the general positions 1

2,
1
4,

1
2 and its inversion

equivalent 1
2,

3
4,

1
2. The pseudo-symmetry operation �x + 1

4,y +
3
4,�z + 1

2 creates an almost identical layer at x = 3
4. Within these

layers the cations are hydrogen bonded, with Ncyclam as the

hydrogen-bond donor and O(CN) as the acceptor, to form

one-dimensional chains. The N� � �O distances are in the range

2.830 (3)–2.970 (3) Å. At the interface at x = 5/8, anions 1 and

2 at � 0.62,0.19,�0.02 and 0.62 0.69,�0.02 would appear to be

associated with the first substructure and anions 3 and 4 at

� 0.63,0.94,�0.02 and 0.63,0.44,�0.02 with the second. Only

one O atom on each anion, viz. O15, O25, O35 or O45, points

away from the interface towards the layer of its associated

substructure. The labelling of cation 3 on a general position is

shown in Fig. 1. The first integer in the label distinguishes the

cation. A projection down c of the unit cell is shown in Fig. 2.

Manganese is six-coordinate, with cyclam occupying the

four equatorial positions and isocyanate in the axial positions.

The cyclam ligand is found in the energetically most favour-

able conformation trans-III (Bosnich et al., 1965), with bond

lengths and angles similar to those of other manganese(III)-

cyclam complexes (Mossin et al., 2002, 2005).

The Mn—Ncyclam bonds in all six complexes [2.032 (2)–

2.050 (2) Å] also have lengths equal to those of related

manganese(III) cyclam complexes, with average Mn—Ncyclam

bond lengths between 2.028 (2) and 2.041 (2) Å (Mossin et al.,

2005). The axial ligands, which are nitrogen coordinated (see

discussion in the next paragraph), have Mnn—Nn3 distances

in the range 2.142 (2)–2.155 (2) Å. This is slightly shorter than

those observed with other nitrogen donors where the average

values are 2.166 (17) Å (for [Mn(cyclam)(NCS)2]+) and

2.171 (6) Å (for [Mn(cyclam)(N3)2]+) (Daugherty et al., 1991;

Meyer et al., 1998).

The manganese ion is a class-a acceptor (‘hard’ ion) and

thus forms its most stable complexes with ligands containing

the most electronegative donor atoms (Greenwood & Earn-

shaw, 1984). This effect is even more pronounced for the

higher oxidation states (III, IV) of manganese found in metal-

organic complexes. O is more electronegative than N and since

NCO in principle can act as either an N or an O donor, we

have looked more closely into the coodination mode. The

bond distances in the cyanate ligands suggest that nitrogen is

the donor atom. The Nn3—Cn6 distances are between

1.171 (3) and 1.181 (3) Å, and are thereby shorter than Cn6—

On1, which are between 1.193 (3) and 1.202 (3) Å (Table 3).

The relatively linear coordination mode of cyanate [average

angle Mnn—Nn3—Cn6 of 160.6� with a range from 156.7 (3)

to 166.5 (3)�] indicates nitrogen coordination using the

Valence Shell Electron Pair Repulsion (VSEPR) model. A

search for terminally bonded cyanate or isocyanate ligands to

transition metals in the Cambridge Structural Database (CSD,

Version 5.25, November 2003; Allen, 2002) led to 109 hits

having an R value below 10%. Only one of these, a nickel

complex, was claimed to be a cyanato complex (Vicente et al.,

1997), but in fact it is very unlikely that this assignment is

correct. The structure is disordered, having both cyanate and
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Figure 1
ORTEPII drawing (Johnson, 1976) showing the labelling of cation 3.
Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A projection down c of the unit cell.



perchlorate partially ligating in the same position, leading to

some very non-physical atomic displacements in the final

model. The average bond distances and angles in the cyanate

ligands extracted from the CSD are in very good agreement

with those found in the present structure. The average Mn—

N—C angle of the extracted structures is 160.5� compared

with an average value of 160.6�; for N—C—O the average

angle is 177.3� compared with 177.5�. The bond distances for

N—C and C—O in Mn compounds (six compounds in the

literature) average 1.161 (7) and 1.201 (4) Å, respectively. This

is again in close agreement with values given in Table 3. We

therefore conclude that the Mn—NCO coordination mode is

correct.

3.1. Comparative refinements

We described the crystal as having two nearly identical

substructures of C�11 symmetry, the second related to the first

by the pseudo-symmetry element �x + 1
4,y + 3

4,�z + 1
2. If this

substructure relationship were exact, then the P�11 and C�11i

symmetrized components would be zero. Which ions are

included in the reference substructure defines the content of

the C�11ii component (see the Appendix). We can check the

quality of a pseudo-symmetry-related substructure description

by moving the second substructure by 1/2b relative to the first.

This would be equivalent to �x + 1
4,y + 3

4,�z + 1
2 acting on the

whole structure if the P�11 and C�11i symmetrized components

were exactly zero. As can be seen from Table 6, the C�11ii

symmetrized component should then be re-labelled as C�11i.

Only the statistics for h odd, k odd reflections are changed in

this new model and for our substructure definition an initial

R(F) value of 0.293 resulted for those h odd, k odd reflections

with I > 3�(I). The poorer statistics of these reflections

compared with the initial model is the result of inadequacies in

the substructure translation as a model for re-orienting the

crystal. In particular, the substructure translation imposes the

wrong sign for second-order terms in a Taylor expansion

arising from the P�11 displacive mode and either of the two C�11
displacive modes. Since it is the P�11 mode and the minor C�11
mode that create a contribution of the same symmetry as the

major C�11 component, the larger the R(F) value of the h odd, k

odd reflections in the new description, the larger the structure-

factor contribution from the minor components. An alter-

native substructure description is to select all the ions at z = 0.

Translating the other substructure by b/2 now gives an initial

R(F) value of 0.429 for those h odd, k odd reflections with I >

3�(I), i.e. this substructure definition is not as accurate as the

previous one.

Whether these wrong structures created by a substructure

translation can be refined to re-obtain the original structure

transformed by the operation �x + 1
4,y + 3

4,�z + 1
2 gives an

indication of the robustness of our refinement procedures, i.e.

how effectively we can reverse the sign of all the P�11 compo-

nents of reflections F(H), including the pseudo-systematic

absences of the P21/n parent structure that see only the P�11
component.

Pairs of pseudo-equivalent positions, constrained to have

their local coordinates in common, should now be (x,y,z and

�x + 1
4,y + 1

4,�z + 1
2), (x,y + 1

2,z and�x + 1
4,y + 3

4,�z + 1
2), (x,y + 3

4,z

+ 1
2 and �x + 1

4,y,�z), (x,y + 1
4,z + 1

2 and �x + 1
4,y + 1

2,�z),

consistent with moving one best-choice substructure by 1
2b. If

we use these local coordinate constraints, then refinement

using all reflections with I > 3�(I) essentially recreated the

original structure transformed by �x + 1
4,y + 3

4,�z + 1
2, within

about 4 cycles for the first model and within 9 cycles for the

second. Unconstrained refinement gets lost along the way.

Initial refinement of the second model was slow, with the fit of

h even, k even reflections getting worse while the fit of h odd, k

odd reflections got slowly better. The final statistics on the h

odd, k odd reflections were not quite as good [R(F) = 0.077

compared with 0.074 and Gof = 1.81 compared with 1.71 for

both pathways]. The fit of reflections that violate the P21/n

absence conditions and so only see the P�11 component do not

fit well in any of the models and only improved when

geometries previously constrained to be equal were refined

independently subject to restraints that made previously equal

distances only approach equality. We note that some pathway

dependence is evident in the refinement. The equal object

constraints that did so much for correcting the models in which

substructures were wrongly related actually stops the refine-

ments becoming equivalent. Replacing constraints by

restraints at the final stage allowed all refinements to become

equivalent in the 497 parameter model.

Attempts at other refinements, starting from constrained

refinement models and then reverting to some form of

restrained refinement, clearly showed that the best results

were obtained by following a sensible constraint refinement

pathway as far as possible before replacing certain constraints

by sensibly chosen restraints.

APPENDIX A
The use of symmetrized components

The structure can be described in terms of symmetrized

components. To a first approximation each displacive mode

involves some combination of rigid-body rotations and

translations of the cations and anions. Differences in local

coordinates of the pseudo-equivalent cations or anions only

become meaningfully refineable when these gross rigid-body

parameters are well determined. Symmetrization can be

created in two ways:

(i) by combining the structure factors of pseudo-equivalent

reflections and

(ii) by combining the parameters of pseudo-equivalent

atoms or ions.

Using the m = 1–32 symmetry elements (Rm,tm) of A2/a

modulo the cell a = 2ap, b = 2bp, c = cp, the scattering density of

a mosaic block of a crystal can be symmetrized and becomes

�(r) = �n�n(r), where the nth of 32 components is described

using appropriately chosen 
mn coefficients as

�nðrÞ ¼ ð1=32Þ�m
mn�ðRmrþ tmÞ:
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If [1/(32)1/2]
mn is chosen as a unitary matrix, i.e.

(1/32)�m = 1,32
mn

0�
mn = 1 if n = n0, 0 otherwise, then

�ðRmrþ tmÞ ¼ �n¼1;32

�
mn�nðrÞ:

Consequently, the structure factor for a mosaic block can be

written as

FðHÞ ¼�nFnðHÞ and

FðR�1
m HÞ ¼ expð�2�iH � tmÞ�n


�
mnFnðHÞ;

where Fn(H) is the Fourier transform of the component �n(r)

and

FnðHÞ ¼ ð1=32Þ�m
mn expð2�iH � tmÞFðR
�1
m HÞ:

It follows that �n|Fn(H)|2 = (1/32)�m|F(R�1
m H)|2. Any

twinning reduces the correlation between Fn(H) components

and 1:1 twinning (as, for example, in a powder pattern)

removes the correlation altogether. Twinning that imposes

exact 2/m diffraction symmetry for our structure implying

observations of I(H) is �n|Fn(H)|2 rather than |�nFn(H)|2, as

would apply to a perfectly ordered structure. It should be

noted that the number of independent components F(Rm
�1H)

for a particular H determines the degrees of freedom for

components Fn(H) at any H. Coefficients 
mn can be chosen so

as to define the index and phase conditions that allow a

component Fn(H) to be non-zero. Stacking fault disorder

could reduce the scale of some Fn(H) components but not

others. However, our final refinement showed no evidence for

stacking faults.

We can label the symmetry of a component �n(r) by finding

the largest subgroup of symmetry elements (Rm,tm) for which

�n(Rmr + tm) = �n(r). Irreducible representation theory

suggests coefficients that create unique labels for singly

degenerate irreducible representations. For doubly degen-

erate irreducible representations any linear combinations of

basis functions, e.g. �n(r), for an irreducible representation

could be used as a basis function for the same irreducible

representation. This implies the coefficients 
mn are not

unique for such components.

Our structure has C�11 symmetry and consequently the only

components that have Fn(H) 6¼ 0 are those that have a

symmetry containing C�11 as a subgroup. These are the A2/a

and A�11 components, which only contribute to the parent

reflections, the P21/n and P2/a components which only

contribute to the second-order satellite reflections, and the

degenerate C�11 components which only contribute to the first-

order satellite reflections.

These ideas were developed using the scattering density of

the actual structure. The 32 equivalent positions of A2/a

modulo the cell a = 2ap, b = 2bp, c = cp, can be written in the

form (Rm,tm) = (1,t1)N1 (�1,0)N2 (1,t3)N3 (2,t4)N4, where N3 can

be 0, 1, 2 or 3 and N1, N2, N4 can each be either 0 or 1, and

(Rm,tm)0 is the identity x,y,z for any m. (1,t1) corresponds to

the translation x + 1
2,y + 1

2,z; (�1,0) corresponds to the inverse

operation �x,�y,�z; (1,t3) corresponds to the translation x,y

+ 1
4,z + 1

2; and (2,t4) corresponds to the rotation operation �x +
1
4,y,�z. We can say 
mn is the product of four numbers, i.e.

n1(N1), n2(N2), n3(N3), n4(N4), where n1(N1) = n2(N2) = 1 for

all values of N1 and N2 so as to preserve C�11 symmetry with an

inversion at the origin. Making n3(0) = n4(0) = 1 selects an

origin and orientation. Table 4 gives possible values of 
mn for

symmetrized components that have been chosen so that all

|
mn| = 1.

The functional form (h + k = 2N only) for the different

symmetrized components can then be constructed from the

true structure factor F(H) = A(H) for the C�11 structure.

F1ðHÞ ¼ 0 unless kþ 2l ¼ 4N when

F1ðHÞ ¼ ½AðHÞ þ ’Að2HÞ	=2 ¼ ’F1ð2HÞ

F2ðHÞ ¼ 0 unless kþ 2l ¼ 4N when

F2ðHÞ ¼ ½AðHÞ � ’Að2HÞ	=2 ¼ �’F2ð2HÞ

F3ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 2 when

F3ðHÞ ¼ ½AðHÞ þ ’Að2HÞ	=2 ¼ ’F3ð2HÞ

F4ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 2 when

F4ðHÞ ¼ ½AðHÞ � ’Að2HÞ	=2 ¼ �’F4ð2HÞ

F5ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 1 when

F5ðHÞ ¼ ½AðHÞ þ ’Að2HÞ	=2 ¼ ’F8ð2HÞ

F6ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 3 when

F6ðHÞ ¼ ½AðHÞ þ ’Að2HÞ	=2 ¼ ’F7ð2HÞ

F7ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 1 when

F7ðHÞ ¼ ½AðHÞ � ’Að2HÞ	=2 ¼ �’F6ð2HÞ

F8ðHÞ ¼ 0 unless kþ 2l ¼ 4N þ 3 when

F8ðHÞ ¼ ½AðHÞ � ’Að2HÞ	=2 ¼ �’F5ð2HÞ;

where ’ = (�1)(h + k + 2l)/2.

We see that for a perfect twin I(H) = I(2H) = �n|Fn(H)|2 =

[|A(H)|2 + |A(2H)|2]/2 for all H. There are only two non-zero

components associated with any k + 2l index condition and

I(H) = |F1(H)|2 + |F2(H)|2 for the parent reflections, |F3(H)|2 +

|F4(H)|2 for the second-order satellite reflections, |F5(H)|2 +

|F7(H)|2 for the first-order satellite reflections with k + 2l =

4N+1, and |F5(2H)|2 + |F7(2H)|2 for the first-order satellite

reflections with k + 2l = 4N + 3.
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Table 4
Values of 
mn for symmetrized components using an A2/a parent
structure.

The superscripts a–d are used to distinguish the four C�11 modes. 
mn has the
same value for pseudo-equivalent positions related by C�11 symmetry.

Pseudo-equivalent A2/a A�11 P21/n P2/a C�11a C�11b C�11c C�11d

Position n = 1 2 3 4 5 6 7 8

x, y, z +1 +1 +1 +1 +1 +1 +1 +1
x, y + 1

2, z +1 +1 +1 +1 �1 �1 �1 �1
x, y + 1

4, z + 1
2 +1 +1 �1 �1 �i +i �i +i

x, y + 3
4, z + 1

2 +1 +1 �1 �1 +i �i +i �i
�x + 1

4, y + 1
4, �z + 1

2 +1 �1 +1 �1 +1 +1 �1 �1
�x + 1

4, y + 3
4, �z + 1

2 +1 �1 +1 �1 �1 �1 +1 +1
�x + 1

4, y + 1
2, �z +1 �1 �1 +1 �i +i +i �i

�x + 1
4, y, �z +1 �1 �1 +1 +i �i �i +i

In the atom list the last two pseudo-equivalent positions were replaced by their C�11
equivalents �x, �y + 1

4, �z + 1
2 and x + 1

4, �y, z.



For the k even reflections each symmetrized component has

a different inherent symmetry and the imposition of an overall

symmetry of A2/a or P21/n makes certain Fn(H) be zero.

However, for the k odd reflections a mix of the two inde-

pendent components of the same C�11 symmetry can be chosen

so as to specify a dominant component and a minor compo-

nent that helps identify constraints that would minimize the

contribution of the minor component at certain stages of a

refinement, see later.

A1. The use of symmetrized parameters

The Taylor expansion F(H) = [F(H)]o + �i,m[@F(H)/@pim]o

[pim � (pim)o] + higher-order terms becomes a first-order

approximation to the structure factors when the higher-order

terms are omitted. The subscript o implies a value evaluated

using an idealized parent structure and pim is the actual value

of the ith parameter in the mth asymmetric unit of the parent

structure. The parent structure symmetry redefines the refer-

ence axes for a parameter in each asymmetric unit. We can use

symmetrized parameter combinations Pin that span the same

variable space as the atom-based parameters pim with

½pim � ðpimÞo	 ¼ �n
mn½Pin � ðPinÞo	;

so that

FðHÞ ¼ ½FðHÞ	o þ�i;n½@FðHÞ=@Pin	o½Pin � ðPinÞo	

þ higher order terms;

where ½@FðHÞ=@Pin	o ¼ �m
mn½@FðHÞ=@pim	o, 
mn ¼ @pim=@Pin

and [Pin � ðPinÞo	 ¼ 0 if Fn(H) must remain zero because of

the symmetry requirements of �(r).

If [1/(32)1/2]
mn is chosen as a unitary matrix, then

½Pin � ðPinÞo	 ¼ ð1=32Þ�m¼1;32

�
mn½pim � ðpimÞo	:

To a first-order approximation

FnðHÞ ’ ½FnðHÞ	o þ�i½@FðHÞ=@Pin	o½Pin � ðPinÞo	

and at any stage of the refinement of a perfectly twinned

crystal

@½�njFnðHÞj
2
	=@Pin ¼�nfFnðHÞ

�
½@FnðHÞ=@Pin	o

þ complex conjugateg

is zero unless Fn(H) 6¼ 0. The Fn(H) components are produced

from the current calculated model and so are pathway-specific.

Each n 6¼ 1 component has a choice of global phase and these

choices are uncorrelated for a 1:1 twinned crystal at this level

of approximation. The global phase chosen for an individual

component defines a choice of origin and orientation for that

component. However, when taken together these choices need

not simply correspond to choices of origin and orientation of

the total structure. Consequently, it is easy to obtain false

refinement minima. Accidental choices of wrong global phases

are not necessarily self correcting, even for an untwinned

crystal (Rae et al., 1990), and can lead to minor Fn(H)

components of a pseudo-centrosymmetric crystal being poorly

determined as well as having an incorrect global phase. A

hierarchical approach to refinement restricts the contributions

to the minor Fn(H) components in order to better determine

values of @[�n|Fn(H)|2]/@Pin so that refinement can mean-

ingfully continue. Rigid-body models for anisotropic atom

displacement parameters and the use of local orthonormal

coordinates allow constraints that restrict the noise in these

minor components. Constraints that certain symmetrized

parameters are zero can also be imposed. Alternatively

restraints that make certain symmetrized parameters

approach zero can be used.

It should be noted that the second-order term of a Taylor

expansion of F(H), i.e.

þ 1
2 �i;i0;n;n0 ½@

2FðHÞ=@Pin@Pi0n0 	o½Pin � ðPinÞo	½Pi0n0 � ðPi0n0 Þo	

creates correlations between the various symmetrized

components by making contributions to the components

Fn(H) according to the symmetry of

½Pin � ðPinÞo	½Pi0n0 � ðPi0n0 Þo	 as is described by the multi-

plication table, Table 5, for parameters symmetrized using the

coefficients 
mn described in Table 4.

However, symmetrized parameters for the doubly degen-

erate C�11 modes can be chosen in a number of ways and the

choice is best made by taking actual notice of the structure.

A2. Choice of variables for constrained refinement

Pseudo-equivalent positions x,y + 1
4,z + 1

2; x,y + 3
4,z + 1

2; �x +
1
4,y + 1

2,�z; �x + 1
4,y,�z may be re-described as x,y,z; x,y + 1

2,z;

�x + 1
4,y + 1

4,�z + 1
2; �x + 1

4,y + 3
4,�z + 1

2 acting on x0,y0,z0 = x,y +
1
4,z + 1

2 rather than x,y,z. Thus, we can use symmetrized vari-

ables suggested by the subgroup P21/n, where all parameters

are associated with the pseudo-equivalent positions x,y,z; x,y +
1
2,z; �x + 1

4,y + 1
4,�z + 1

2; �x + 1
4,y + 3

4,�z + 1
2. Values of 
mn are

now those of Table 6.
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Table 6
Values of 
mn for symmetrized components using a P21/n parent
structure.


mn has the same value for pseudo-equivalent positions related by C�11
symmetry.

Pseudo-equivalent P21/n P�11 C�11i C�11ii

Position n = 1 2 3 4

x, y, z +1 +1 +1 +1
x, y + 1

2, z +1 +1 �1 �1
�x + 1

4, y + 1
4, �z + 1

2 +1 �1 +1 �1
�x + 1

4, y + 3
4, �z + 1

2 +1 �1 �1 +1

Table 5
Multiplication table using an A2/a parent structure.

A2/a P21/n A�11 P2/a C�11a C�11b C�11c C�11d

A2/a A2/a P21/n A�11 P2/a C�11a C�11b C�11c C�11d

P21/n P21/n A2/a P2/a A�11 C�11b C�11a C�11d C�11c

A�11 A�11 P2/a A2/a P21/n C�11c C�11d C�11a C�11b

P2/a P2/a A�11 P21/n A2/a C�11d C�11c C�11b C�11a

C�11a C�11a C�11b C�11c C�11d P21/n A2/a P2/a A�11
C�11b C�11b C�11a C�11d C�11c A2/a P21/n A�11 P2/a
C�11c C�11c C�11d C�11a C�11b P2/a A�11 P21/n A2/a
C�11d C�11d C�11c C�11b C�11a A�11 P2/a A2/a P21/n



We now produce the results I(H) = |F1(H)|2 + |F2(H)|2 for h

even, k even reflections and I(H) = |F3(H)|2 + |F4(H)|2 for h

odd, k odd reflections and |F1(H)|2 = 0 for the systematic

absence conditions of the P21/n parent structure. The cations

are now separated into two subsets. The dominant component

for the h even, k even reflections is the P21/n component, but

the dominant C�11 component is yet to be determined. It should

be noted that I(H) = |F(H)|2 + |F(2H)|2 and values for 
m3 of

21/2,�(2)1/2, 0, 0 and for 
m4 of 0, 0, (2)1/2,�(2)1/2 makes F3(H)

= F(H) and F4(H) = (�1)h + 2k + l F(2H). However, this adds no

insight to problems in the structure refinement.

The structure factor is made up of contributions from

different asymmetric units of the true structure and the choice

as to which of a set of equivalent atoms is in the reference

asymmetric unit is irrelevant. However, in a pseudo-symmetric

structure the choice of which of a set of pseudo-equivalent

atoms is in a pseudo-asymmetric unit becomes important.

Consider the use of the reference position x0,y0,z0 = �x + 1
4,y

+ 3
4,�z + 1

2 instead of x,y,z. The new pseudo-equivalent posi-

tions 10,20,30,40 in Table 6 correspond to the old pseudo-

equivalent positions 4,3,1,2. What was previously described as

a C�11i component should now be described as a C�11ii component

and what was previously described as a C�11ii component should

now be described as a C�11i component.

Thus, in the first-order approximation Fn(H) ’ [Fn(H)]o +

�i[@F(H)/@Pin]o[Pin � (Pin)o] we can enforce the dominant C�11
displacive mode for any set of four pseudo-equivalent cations

or anions that belong to the C�11ii component by choosing the

appropriate reference cation or anion. Consequently, the first-

order approximation of the C�11i component now contains only

the minor displacive mode for each set of ions. (Our choice of

a global phase for the P�11 component and our choice of loca-

tion for a reference cation as the true inversion at 1
2,0,0 and

subsequent comparative refinement implied that our domi-

nant displacement mode should be labelled C�11ii and not C�11i.)

Subsequent refinement of the origins and the orientations

of the cations at the general positions � 1
2,

1
4,

1
2 and � 3

4,
1
2,0

showed that a C�11ii component was dominant for the transla-

tion component if the reference molecule was located at 1
2,

1
4,

1
2

and not 3
4,

1
2,0. The rotational contribution to this component is

zero to a first-order approximation, as imposed by the value of

�1 for 
mn for inversion at the cation centre. Likewise, for the

anions a C�11ii component was dominant for the translation and

rotation components if the reference molecule was located at

� 5/8,y,0 and not 5/8,y + 1
4,

1
2, y � 0.19 or 0.69.

Since C�11ii was the dominant component in our choice of

structure description, a constraint in the penultimate stage of

our hierarchical refinement procedure was to assume no first-

order P�11 or C�11i contribution from changes in local ortho-

normal coordinates relative to the refinable orthonormal axial

systems for the cations. Thus, each pair of pseudo-equivalent

positions, viz. (x,y,z and �x + 1
4,y + 3

4,�z + 1
2), was constrained

to have its own local coordinates in common, where x,y,z

refers to a cation at 1
2,0,0; 1

2,
1
2,0; 3

4,0,0; 3
4,

1
2,0. For a reference cation

in a general position, the pseudo-inversion related halves of

the cation were independent of each other. To a first-order

approximation the P�11 and C�11i components then simply

describe small changes in orientation and origin for the cation

axial systems that retained a pseudo-equivalence when the

P21/n and C�11ii components are considered in isolation. The

use of rigid-body models to describe atom displacement

parameters also restricts the extent to which differences in

atom displacement parameters contribute to the minor

components.

To understand second-order effects we use the multi-

plication table, Table 7. As can be seen from Table 7, the P21/n

and C�11ii components alone do not induce the P�11 and C�11i

components, nor initiate their refinement. However, the C�11ii

and P�11 components can produce a non-zero contribution to

the C�11i component initiating its refinement. Restricting the

nature of the P�11 and C�11i components allows a sensible

refinement pathway before initiating the final refinement

stage. Refinement was initiated by a rotation of the cations on

true inversion centres using a mode of P�11 symmetry, followed

by a mode of C�11ii symmetry, see earlier.

Omitted second-order terms can be compensated for by the

first-order contributions of symmetrized anisotropic atom

displacement parameters to the appropriate Fn(H). This was

the essence of the hierarchical approach to the refinement

used to obtain the structure solution. Atom displacement

parameters of a model constrained to retain P21/n or P�11
symmetry identified the nature of omitted symmetrized

components. The likelihood of mistakes can be assessed by

noting the presence or absence of strange anisotropic atom

displacement parameters. Mistakes can be compensated by

incorrect atom displacement parameters. The use of identical

object constraints and rigid-body TLX models improved the

ability to correct mistakes. It is noted that [@2F(H)/@Pin@Pi0n0]o

is only non-zero if Pin and Pi0n0 involve a common atom. Table

7 shows how the existence of two symmetrized components

can induce an Fn(H) component for a third symmetrized

component. Each symmetrized component has to have some

initial parameterization for Fn(H) 6¼ 0 in order to make

possible the refinement of that component. A poor choice can

result in a particular component being predominantly noise

and the model for this component is not necessarily improved

as refinement proceeds.
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